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a b s t r a c t

We propose a model of continuous opinion dynamics, where mutual interactions can
be both positive and negative. Different types of distributions for the interactions, all
characterized by a single parameter p denoting the fraction of negative interactions,
are considered. Results from exact calculation of a discrete version and numerical
simulations of the continuous version of the model indicate the existence of a universal
continuous phase transition at p = pc below which a consensus is reached. Although the
order–disorder transition is analogous to a ferromagnetic–paramagnetic phase transition
with comparable critical exponents, themodel is characterized by somedistinctive features
relevant to a social system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative understanding of individual and social dynamics has been explored on a large scale [1–8] in recent times.
Social systems offer some of the richest complex dynamical systems, which can be studied using the standard tools of
statistical physics. With the availability of data sets and records on the increase, microscopic models mimicking these
systems help in understanding their underlying dynamics. On the other hand, some of these models exhibit novel critical
behavior, enriching the theoretical aspect of these studies.

Mathematical formulations of such social behavior have helped us to understand howglobal consensus (i.e., agreement of
opinions) emerges out of individual opinions [9–25]. Opinions are usually modeled as variables, discrete or continuous, and
are subject to spontaneous changes as well as changes due to binary interactions, global feedback and even external factors.
Apart from the dynamics, the interest in these studies also lies in the distinct steady state properties: a phase characterized
by individuals with widely different opinions and another phase with a major fraction of individuals with similar opinions.
Often the phase transitions are driven by appropriate parameters of the model.

In this paperwe study amodel of opinion dynamics by considering two-agent interactions. Continuous opinion dynamics
has been studied for a long time [26–28], with the models designed in such a way that eventually the opinions cluster
around one (consensus), two (polarization) or many ( fragmentation) values. The average opinion or macroscopic behavior
has been emphasized only in some recent works [23,24], where a phase transition from ordered to disordered phase has
also been reported. However, in contrast to these models, we obtain here an ordered phase where even in the presence
of a dominant opinion (symmetry broken phase), opposing opinions survive and a disordered phase where all opinion
values coexist without any preference to any value (symmetric phase). Thus we present this in the general context of an
order–disorder transition similar to that of the Ising and related models. We also compare our results with earlier works
where a mean-field phase transition was observed in presence of contrarians in the society [21].
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The paper is organized as follows: in Section 2 we introduce the model. Then in Section 3 the main results are presented
along with the calculations and numerical simulations. In Section 4 we extend the model to include bond dilution and
present the phase diagram. Finally we discuss our results in Section 5.

2. The model

We propose a new model for emergence of consensus. Let oi(t) be the opinion of an individual i at time t . In a system of
N individuals (referred to as the ‘society’ hereafter), opinions change out of pair-wise interactions:

oi(t + 1) = oi(t) + µijoj(t). (1)

One considers a similar equation for oj(t + 1). The choice of pairs {i, j} is unrestricted, and hence our model is defined on a
fully connected graph, or in other words, of infinite range. Note that this is simply a pair-wise interaction and we imply no
sum over the index j. Here µij are real, and it is like an interaction parameter representing the influence of the individual
withwhom interaction is taking place. The opinions are bounded, i.e.,−1 ≤ oi(t) ≤ 1. This bound, alongwith Eq. (1) defines
the dynamics of the model. If, by following Eq. (1) the opinion value of an agent becomes higher (lower) than +1 (−1), then
it is made equal to +1 (−1) to preserve this bound. The ordering in the system is measured by the quantity O =


i oi

 /N ,
the average opinion, which is the order parameter for the system.

The present model is similar in form to a class of simple models proposed recently [23–25,29], apparently inspired by
the kinetic models of wealth exchange [30,31]. A spontaneous symmetry breaking was observed in such models: in the
symmetry broken phase, the average opinion is nonzero while in the symmetric phase, the opinions of all individuals are
identically zero indicating a ‘neutral state’. The parameters representing conviction (self interaction) and influence (mutual
interaction) in thesemodelswere considered either uniform (a scalar) or in the generalized case different for each individual,
i.e, given by the components of a vector. In addition to this there is an added feature of the randomness in the influence term
which in effect controls the sharpness of the phase transitions in these models.

In our proposed model, the conviction parameter or self interaction parameter is set equal to unity so that in absence of
interactions, opinions remain frozen. In such a situation, it has been observed previously that any interaction, however small,
leads to a highly unrealistic state of all individuals having extreme identical opinions (either oi = 1 ∀i or oi = −1 ∀i) [24]
when the interactions take up positive values only. This suggests that one should generalize the interactions to include both
positive and negative values. This is realistic also in the sense that it reflects the fact that in a social interaction of two
individuals, there may be either agreement or disagreement of opinions. We therefore consider not only a distribution of
the values of µij (to maintain the stochastic nature of the interactions) but also allow µij to have negative values. We define
a parameter p as the fraction of values of µij which are negative, which, we will show later, leads to characteristic ordered
and disordered states as in reality.

The fact that we allow random positive and negative values for the interactions may suggest that the model is analogous
to a dynamic spin glass model [32,33], as in the latter, one can consider a dynamic equation for the spins which formally
resembles Eq. (1). However, the two dynamic models are not equivalent with the following differences: (i) the interactions
in the opinion dynamics models are never considered simultaneously and thus the question of competition leading to the
possibility of frustration does not arise, and (ii) there is also no energy function to minimize, (iii) the symmetry p → 1 − p
does not exist in our model, which is naturally present for spin-glass. We will get back to the comparison of the twomodels
in the context of phase transition later in this paper.

The effect of negative interactions was considered previously in a different opinion dynamics model under the name
Galam contrarian [21]. The discrete, binary opinion model followed a deterministic evolution rule for a group of three or
more individuals. It was shown that depending on the concentration of the contrarians, the system will either reach an
ordered state, where there one of the opinions will havemajority, or a disordered state, where no clear majority is observed.
The critical behavior of the model is similar to the one we present here at least in the fully connected graph. However, our
model considers continuous opinion values. Also, the Galam contrarians always take the opinion opposite to that of the
majority. However, in our case we also consider the present state of opinion of the agents and accordingly even the discrete
version of our model has three states. A two-state discrete version of this model will not show any ordered state.

3. Results

Unless otherwise mentioned, we keep µij values within the interval [−1, 1] for simplicity. In principle, several forms
can be considered for µij (annealed, quenched, symmetric, non-symmetric etc.). Further, there can be several distribution
properties forµij in the interval [−1, 1] (discrete, piecewise uniform and continuous distributions). Unless otherwise stated,
in our study, we would discuss the case when µij are annealed, i.e., they change with time. In other words, at each pairwise
interaction, the value of µij is randomly chosen respecting the fact that it is negative with probability p. For this case, the
issue of symmetry does not arise. We consider distributions for both continuous and discrete µij.

In all the above cases, we find a symmetry breaking transition. Below a particular value pc of the parameter p, the system
orders (i.e., the order parameter O has a finite non-zero value), while the disordered phase (where O = 0) exists for higher
values of p. Since this phase transition is very much like the thermally driven ferromagnetic–paramagnetic transition in
magnetic systems, we have considered the scaling of the analogous static quantities, which are:
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Fig. 1. Probability distribution of opinions for polarized (all+1) initial condition with (a) discreteµij (pc = 1/4) and (b) continuousµij (pc ≈ 0.34); same
for random (uniform between [−1 : +1]) initial condition with (c) discrete µij(pc = 1/4) and (d) continuous µij (pc ≈ 0.34). All data are for N = 4096.

(i) the average order parameter ⟨O⟩, ⟨· · ·⟩ denoting average over configurations,
(ii) the fourth order Binder cumulant U = 1 −

⟨O4
⟩

3⟨O2⟩2
,

(iii) a quantity analogous to susceptibility per spin, which we write as V = N[⟨O2
⟩ − ⟨O⟩

2
].

We also calculate (iv) the condensate fraction fc = f1 + f−1, where f1 and f−1 denote the fraction of population with
opinion 1 and −1 respectively. fc is exclusive to this class of opinion dynamics models and is expected to show scaling
behavior near the critical point [23,24].

Before a more detailed characterization of this transition, we find it useful to describe the behavior of the probability
distribution of the order parameter first. This distribution itself shows the signature of a phase transition. We consider both
the cases with discrete (±1) and continuous (within the bound −1 ≤ µij ≤ +1) values for µij. For each of the above case
we consider both polarized and random initial conditions. We show the cases where the initial condition is fully polarized
(all +1) and µij are discrete (Fig. 1(a)) and continuous (Fig. 1(b)). We consider two p values, one below and one above the
critical point. As can be seen from the figures, for p = 0.6 > pc the distributions are symmetric in both the cases, which
manifestly imply disorder, while the ordered phase is asymmetric with a bias towards +1 due to the initial condition.

Now consider the case when the initial condition is random instead of being polarized as above. Then of course in
a particular ordered state either majority positive or majority negative opinion can occur. Hence the order parameter
distributions (after averages over many configurations) become symmetric (Fig. 1(c) and (d)) even in the ordered phase for
both discrete and continuous µij values. An interesting point, however, is the depletion of population in the intermediate
(between the extremist with opinions ±1) opinion values in an ordered society (Fig. 1(c)). This is even more pronounced
when we make µij values discrete (±1). In this case, the distribution becomes discretized almost simultaneously with the
symmetry breaking transition such that the intermediate opinion values do not exist at all in the ordered state (Fig. 1(d)).
Therefore, we find that in the ordered state with discrete µij, the society becomes highly clustered in the sense that
continuous variation of opinion is no longer a possibility. This of course is commensurate with the continuous µij case
described above, where possibility of ordering leaves the society highly clustered as is generally seen before and after
decisive elections.

It is important to note here that although the distribution of average opinion is sensitive to the initial condition, the order
parameter itself is not as the latter is obtained by taking the absolute value of the average opinion in a single configuration
and then taking a further average over all configurations in a numerical study. Moreover, the critical behavior is also
unaffected by the changes in initial condition.

Our major interest lies in identifying the critical behavior in these models. Assuming that there exists a steady state
for these models (which are numerically observed), one can derive exact expressions for the steady state probabilities
f1, f0 and f−1 in the annealed discrete case where we assume the initial condition to be such that the agents have oi(t =

0) ∈ {−1, 0, +1}. The scaling behavior of the order parameter and fc can be exactly obtained in this method. To do that,
we consider the probabilities that an agent’s opinion gets decreased ( for initial opinion +1 or 0) or increased ( for initial
opinion −1 or 0) or remains constant when two agents interact. For example, let us consider the change for the agent A,
interacting with a second agent B (one can consider updated values of both but it does not matter): when both have opinion
+1 (probability of occurrence f 21 ), A’s opinion decreases with a probability p, giving the joint occurrence probability of the
event as pf 21 . On the other hand, when B has opinion−1, the similar event has the probability (1−p)f1f−1. One can similarly
find out the probabilities of decrease and increase in all possible cases. The exact expression for the net increase probability
is pf 2

−1+(1−p)f1f0+pf0f−1+(1−p)f1f−1 and that for the net decrease probability is pf 21 +pf1f0+(1−p)f0f−1+(1−p)f1f−1.
In the steady state these two should be equal, i.e.,

pf 21 + pf1f0 + (1 − p)f0f−1 = pf 2
−1 + (1 − p)f1f0 + pf0f−1, (2)
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Fig. 2. Discreteµij: power law behavior of the order parameter O near the critical point pc (Eq. (8)) showing β = 1/2. The dotted line is x1/2 , a visual guide.
Inset: (a) Phase diagram. The points represent simulation results. They are in better agreement with the analytical results as the system size is increased
from 256 to 2048. (The lower half of the phase diagram follows from symmetry.) (b) Linear scaling of fc − f 0c . The dotted line is x1 .

which simplifies to

(2f1 + f0 − 1) [p − f0(1 − p)] = 0. (3)

This means, either 2f1 + f0 = 1, i.e., f1 = (1 − f0)/2 = f−1 which implies a disordered phase, or

f0 =
p

1 − p
. (4)

Next we show that at criticality all three fractions would become equal such that pc = 1/4. Let us take the solution in
the disordered phase where f1 = f−1. We consider the processes contributing to the in/out flux for f0. We enumerate all
possibilities as before and get the following: flux into f0 is 2[(1− f0)/2]2 and flux out of f0 is f0(1− f0). So, in the steady state

1 − f0
2

2

=
f0(1 − f0)

2
. (5)

Hence, either f0 = 1, which can be ignored by considering the steady states of the other two fractions, or f0 = 1/3. Now,
just at the critical point this solution will begin to be valid. Hence, at the critical point all three fractions are 1/3, leading to
pc = 1/4.

In the ordered phase, the order parameter O is given by |f1 − f−1|. To evaluate f1 and f−1, we calculate the flux in and out
of f1. Flux out of f1 is pf 21 + (1 − p)f1[1 − ( f1 + f0)] and flux into f1 is (1 − p)f0f1 + pf0[1 − ( f1 + f0)]. Hence at steady state,
f1 is given by

f1 =
1 − 3p + 2p2 ±


1 − 6p + 9p2 − 4p3

2(1 − 2p + p2)
, (6)

where we have used Eq. (4). Hence the order parameter is given by

O =
1 − 3p + 2p2 ±


1 − 6p + 9p2 − 4p3

(1 − p)2
+

2p − 1
1 − p

. (7)

The variation of the order parameter with p is shown in Fig. 2. It shows the expected behavior, i.e., it vanishes at p = pc .
Rewriting the above equation in terms of x = pc − p, algebraic simplifications give

O =
3/8 + 2x + 2x2 ±


9x/4 − 3x2

9/16 + 3x/2 + x2
−

2x + 1/2
3/4 + x

. (8)

As x → 0,O ∼
√
x, implying the critical exponent for O is β = 1/2. This also agrees well with the power law fit of the

order parameter expression (Eq. (8)) near the critical point (Fig. 2). Calculation for fc on the other hand shows that it has a
constant value f 0c = 2/3 beyond pc and for p < pc , fc − f 0c ∼ x1, i.e., vanishes linearly at pc , which also perfectly agrees with
numerical simulations. Numerical simulations for the model with continuous µij yields similar behavior with f 0c ≃ 0.22
since opinion values other than ±1 and 0 exist.

Using the same kind of argument as above, one can show that there will be no phase transition when µij = ±µ0 with
µ0 ≥ 2. It is obvious that in this case the opinions can have only two values +1 and −1. Let f1 be the fraction of agents
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Fig. 3. Data for continuous, annealed µij model, showing (a) finite size scaling of the Binder cumulant U for different system sizes N; the critical point is
pc = 0.3404 ± 0.0002, and the best data collapse is for ν = 2.00 ± 0.01. Inset: Variation of U with p for different system sizes; (b) finite size scaling of
order parameter O for different N; best data collapse is for β = 0.50 ± 0.01. Inset: Variation of the order parameter O with p for different system sizes;
(c) finite size scaling of V for different N; best data collapse is for γ = 1.00 ± 0.05. Inset: Variation of V with p for different N . Number of averages for
different system sizes are 3000 for N = 256, 1800 for N = 512, 1000 for N = 1024 and 400 for N = 2048.

having opinion +1. Once again considering net decreases and increases of opinions and equating them in the steady state,
we get

p(1 − f1)2 = pf 21 . (9)

For any non-zero p the solution of this equation is f1 = 1/2 thereby giving complete disorder. Hence, in this condition there
cannot be an ordered phase for any finite p.

We performed Monte Carlo simulation for different system sizes (N = 64, 256, 512, 1024, 2048) to estimate pc and all
the relevant exponents for discrete as well as continuous µij’s (see Fig. 3 where the data for the continuous distribution of
µij are presented). A Monte Carlo step is the simultaneous update of N agent’s opinion values. For each simulation point,
sufficient relaxation time was given (depending on system size), such that the measurable quantity reached a steady-state
value. Then the ensemble average of those steady state values were taken (number of ensemble again depends on system
size, see figure captions for details).

We estimated the critical point pc from the crossing of the Binder cumulants for different system sizes [34]. Our estimate
is pc ≃ 0.249 ± 0.001 for the discrete case which is consistent with the analytical value of 1/4 derived earlier. The critical
Binder cumulant is U∗

= 0.30 ± 0.01. For the continuous case, pc = 0.3404 ± 0.0002, and U∗
= 0.284 ± 0.004. We find

excellent finite size collapse for all cases.We estimate the correlation length exponent ν = 2.00±0.01, the order parameter
exponent β = 0.50 ± 0.01 and the fluctuation exponent γ = 1.00 ± 0.05.

One can consider several other distributions with a similar parameter p to test the universality of the phase transition:
e.g., we takeµij = 1with probability (1−p) andµij = −1/2with probability p. The transition point shifts but the exponents
remain same.

We also conducted detailed simulations for the case where µij are quenched variables, i.e., they do not change with
time. For the fully connected graph considered here, numerical results for continuous µij’s (see Fig. 4) indicate that critical
behavior is the same as that of the annealed case mentioned above.
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Fig. 4. Data for continuous, quenched µij model, showing (a) finite size scaling of the Binder cumulant U for different system sizes N; the critical point is
pc = 0.34 ± 0.01, and the best data collapse is for ν = 2.00 ± 0.01. Inset: Variation of U with p for different system sizes; (b) finite size scaling of order
parameter O for different N; best data collapse is for β = 0.50± 0.01. Inset: Variation of the order parameter Owith p for different system sizes; (c) finite
size scaling of V for different N; best data collapse is for γ = 1.00 ± 0.05. Inset: Variation of V with p for different N .Number of averages for different
system sizes are 3000 for N = 256, 1800 for N = 512, 1000 for N = 1024 and 400 for N = 2048.

4. Model with bond dilution

Here we briefly consider the case when all the interactions between the agents are not allowed, i.e., agents are selective
in their interactions. In the case of continuous distribution of µij, it does not make sense to parametrize the probability of
µij = 0. It is therefore useful to consider the discrete distribution only for the dilute case by considering µij = 0 with
probability q along with µij = −1 with probability p as before and µij = 1 otherwise. Thus, q is naturally the ‘bond dilution’
parameter.

Considering the balance of the increases and decreases in the order parameter in the steady state, one gets

f 21 p + f0f1p + f0f−1 [1 − (p + q)] = f 2
−1 + f0f1 [1 − (p + q)] + f0f−1p. (10)

This gives, either f1 = f−1, i.e., disorder, or in the ordered state

f0 =
p

1 − p − q
. (11)

Now, in and out fluxes of f0 gives

f 21 p + 2f1f−1 [1 − (p + q)] + f 2
−1p = f0f1 [1 − (p + q)] + f0f1p + f0f−1 [1 − (p + q)] + f0f−1p. (12)

In the disordered state, the only feasible solution is f0 =
1
3 . As before, assuming the continuity of f0 across the transition

point, we get the phase boundary equation as

pc =
1
4

(1 − qc) , (13)

where qc is the critical value of q on the phase boundary. This phase boundary is shown in Fig. 5. Clearly q = 0 limit is the
unrestricted case studied in the previous section. The fact that the ordered phase extends to q = 1 is for p = 0 is consistent
with the fact that for an infinite dimensional lattice, percolation transition takes place at q = 1. The universality of the
model along the phase boundary needs to be done. One can expect it to be same as before.
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Fig. 5. Phase diagram for the dilute model.

5. Discussions

We present a simplified model for opinion formation in a society of highly connected individuals. With the dynamical
rule defined by Eq. (1), an agent modifies his/her opinion under the influence of another. This evolution rule corresponds to
cases where opinions are modified following discussions/debates with another individual. The key feature of our model is
the inclusion of negative interactions with probability p. We study the steady-state collective behavior of this model. While
modeling the opinion formation, the effects of ‘self-conviction’ and ‘external-pressure’ have been considered before (see
e.g., Ref. [35]).

Here we concentrate upon the study of ‘consensus formation’ as a dynamical critical phenomenon. Eq. (1) of course does
not include all social complexities involved in such interactions, however in this simple form it manifests some intriguing
features.

With the introduction of a single parameter p, defined in a simple manner, the proposed model shows the existence of
a universal phase transition and also some additional desirable features representing a real society. The parameter p plays
a role of the disordering field (similar to temperature in thermally driven phase transitions). Beyond a certain value of the
fraction of negative interaction, a phase transition from an ‘ordered’ state (with most of the individuals having opinions of
same sign) to a ‘disordered’ state (where the opinions can have different signs and add up to zero) occurs (see Eq. (8)).

The highlight of our model (with discrete values of µij) lies in the unique selection of an ordered state with discrete
opinion values (±1 and 0) while in the disordered state, all opinion values in [−1, +1] coexist (Fig. 1(c)). The disordered
state is onewith a lot of disagreement, hence all types of opinions co-exist in the society. But as it starts to get ordered (below
pc), polarization occurs, andmarginal opinions cease to exist, resembling the ordering in amulti-party election scenario. This
unique selection of the ordered state is in fact independent of the initial conditions which adds to the richness of the model.
This of course also happens in the bounded confidence models where opinions, originally varying continuously, ultimately
cluster around a few values typically. However, as already mentioned, in these models, the dynamics is designed to achieve
this, whereas in our model, it happens naturally without any imposed restrictions.

The phase transition in our model presents a case of a classical continuous phase transition with simple exponent values
and showing finite size scaling behavior. To model ‘social temperature’ which essentially destroys consensus rather than
forming it, we have kept negative interactions among the agents. This leads to the desirable feature that even in the ‘ordered’
phase, opinions of both signs can coexist and that the disordered state is also not a ‘neutral state’. In contrast, in the models
with only positive interactions [23–25], where each ‘scattering’ leaves the two agents closer to each others’ opinion, finite
size behavior was absent and the order of phase transition difficult to identify. Thus, we believe ourmodel is closer to reality
and also in terms of critical behavior presents significant modifications.

Another important point to be mentioned is that one could change the distribution of the interactions in a way such that
no ‘neutral’ individual remains in the society (opinion values are ±1). It is intriguing and to some extent counter intuitive
that such processes lead to no consensus in our model (see Eq. (8)). When opinions can take values equal to ±1 only, a
comparison with a Ising spin model is bound to arise. The model with which one should compare is the fully connected
Ising model with random bimodal distribution of the interactions (−J with probability p and +J with probability (1 − p)).
However, in that model there is indeed a phase transition occurring at p = 1/2 [33] from a ferromagnetic to a spin glass
phase. On the other hand, we get a transition only when the opinions can take more values than just ±1 (e.g., ±1 and 0). In
our opinion dynamics model, the ordered phase may be regarded as a ferromagnetic phase and the disordered phase as a
paramagnetic phase (certainly not a spin glass phase as the opinions do not attain a frozen state had it been so).

When agents are ‘selective’ in their interactions and some of the interactions are absent or muted, this effectively makes
those µij = 0. If µij = 0 with probability q, then we can conceive a phase diagram with respect to the parameters p and q
(see Fig. 5) separating the ordered and disordered phases.

A comparison of our model with the model of Ref. [21] which introduces Galam contrarians (see also Refs. [36–38]) may
also be made. In the latter, one has two discrete choices of opinion while the general case of the present model involves
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continuous opinion values. The mean-field critical behavior, however, is observed in both models with same exponent
values. In Ref. [21] the contrarians would take the opinion which is exactly opposite of that of the majority of the group.
The evolution of opinions is clearly different in our case, where the original opinion of an agent is also considered while
assigning the changed value. This makes even the discrete version of the present model consist of three states (−1, 0 + 1).
Furthermore, we have shown that (see Eq. (9)) if we consider the discrete version to have two states only, then there is no
ordered state in the model as soon as any finite fraction of negative interactions is introduced.

Results obtained from opinion dynamics models can be compared to real data to a certain extent. Of course, the
microscopic rules governing the dynamics in amodel cannot be verified directly but one can justify themodel by comparing
its macroscopic behavior with real data. Discrete opinion models may be applicable to election scenarios [21]. Continuous
opinionmodels, on the other hand, mimic the case of rating or degree of support for an issue. So in ourmodel,−1 represents
extreme unfavorable opinion, +1 is extreme favorable while zero means an average rating/indifferent response. Thus the
order parameter in the model corresponds to the overall rating and ordered state means there is a clear-cut decision made.
A disordered statemeans the absence of a decision. The situation is comparable to a case of final verdict arrived at by a panel
of juries. If there is a lot of disagreement among the juries a decision is hard to achieve—this result is indeed obtained in our
model where the disagreement is represented by the negative interaction terms.

Although we have considered continuous opinions in the model, it was shown exactly that using discrete opinions
1, −1, 0 also leads to the same critical behavior. From the statistical physics viewpoint, the important role in the phase
transition is thus played by the parameter p quantifying the fraction of negative interactions, irrespective of the fact that
opinions are continuous or discrete. This precisely indicates that p is the relevant parameter in the model and the nature of
opinion is irrelevant as far as critical behavior is concerned

We conclude with the remark that the values of the exponents β, γ are very similar to that of the mean field exponents
of the Ising model. Interpreting ν as ν ′dwhere d is the effective dimension in this long rangedmodel and putting d = 4 as is
done in small world like networks [39], the value of the effective correlation length exponent ν ′

= 1/2 also coincides with
the mean field value.

For future study, the properties of this model in various lattices and networks and also its dynamical behavior would be
interesting [40].

Acknowledgments

The authors would like to specially thank H. Nishimori for very useful correspondence. Inspiring discussions with B. K.
Chakrabarti, J. Kertész andM. Marsili are also acknowledged. SB acknowledges discussions with N. Sarkar. PS acknowledges
UPE project and DST project for partial support.

References

[1] B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Eds.), Econophysics and Sociophysics, Wiley-VCH, Berlin, 2006.
[2] D. Stauffer, in: R.A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2009; Comput. Sci. Eng. 5 (2003) 71.
[3] A.-L. Barabási, Nature 435 (2005) 207.
[4] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, Phys. Rev. Lett. 75 (1995) 1226.
[5] F. Vazquez, P.L. Krapivsky, S. Redner, J. Phys. A 36 (2003) L61.
[6] C. Castellano, S. Fortunato, V. Loreto, Rev. Modern Phys. 81 (2009) 591.
[7] J.E. Cohen, J. Hajnal, C.M. Newman, Stochastic Process. Appl. 22 (1986) 315.
[8] S. Galam, Y. Gefen, Y. Shapir, J. Math. Socio. 9 (1982) 1.
[9] P. Holme, M.E.J. Newman, Phys. Rev. E 74 (2006) 056108.

[10] S. Fortunato, V. Latora, A. Pluchino, A. Rapisarda, Int. J. Mod. Phys. C 16 (2005) 1535.
[11] P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90 (2003) 238701.
[12] M.N. Kuperman, D.H. Zanette, Eur. Phys. J. B 26 (2002) 387.
[13] T.M. Liggett, Interacting Particle Systems: Contact, Voter and Exclusion Processes, Springer-Verlag, Berlin, 1999.
[14] K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11 (2000) 1157.
[15] S. Galam, Int. J. Mod. Phys. C 19 (2008) 409.
[16] S. Galam, F. Jacobs, Physica A 381 (2007) 366.
[17] G. Deffuant, N. Neau, F. Amblard, G. Weisbuch, Adv. Complex Syst. 3 (2000) 87.
[18] R. Hegselman, U. Krause, J. Art. Soc. Soc. Simul. 5 (2002) 2.
[19] S. Fortunato, Int. J. Mod. Phys. C 16 (2005) 17;

S. Fortunato, Int. J. Mod. Phys. C 15 (2004) 1301.
[20] G. Toscani, Commun. Math. Sci. 4 (2006) 481.
[21] S. Galam, Physica A 333 (2003) 453.
[22] S. Biswas, P. Sen, Phys. Rev. E 80 (2009) 027101;

P. Sen, Phys. Rev. E 81 (2010) 032103;
S. Biswas, P. Sen, J. Phys. A: Math. Theor. 44 (2011) 145003.

[23] M. Lallouache, A.S. Chakrabarti, A. Chakraborti, B.K. Chakrabarti, Phys. Rev. E 82 (2010) 056112.
[24] P. Sen, Phys. Rev. E 83 (2011) 016108.
[25] S. Biswas, A.K. Chandra, A. Chatterjee, B.K. Chakrabarti, J. Phys. Conf. Ser. 297 (2011) 012004.
[26] M. Stone, Ann. Math. Stat. 32 (1961) 1339.
[27] M.H. DeGroot, J. Am. Stat. Asoc. 69 (1974) 118.
[28] S. Chaterjee, E. Seneta, J. Appl. Probab. 14 (1977) 89.
[29] S. Biswas, Phys. Rev. E 84 (2011) 056106.



S. Biswas et al. / Physica A 391 (2012) 3257–3265 3265

[30] A. Chakraborti, B.K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167;
A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A 335 (2004) 155;
A. Chatterjee, B.K. Chakrabarti, Eur. Phys. J. B 60 (2007) 135.

[31] A. Chatterjee, Eur. Phys. J. B 67 (2009) 593.
[32] K. Binder, A.P. Young, Rev. Modern Phys. 58 (1986) 801.
[33] H. Nishimori, private communication.
[34] Wemake use of the special property of the Binder cumulant that it is size invariant at the critical point. e.g., see K. Binder, Z. Phys B: Condens. Matter.

43 (1981) 119.
[35] M. Lewenstein, A. Nowak, B. Latané, Phys. Rev. A 45 (1992) 763.
[36] H.S. Wio, M.S. de la Lama, J.M. Lopez, Physica A 371 (2006) 108.
[37] D. Stauffer, J.S. Martins, Physica A 334 (2004) 558.
[38] S. Galam, Eurphys. Lett. 70 (2005) 705.
[39] H. Hong, B.J. Kim, M.Y. Choi, Phys. Rev. E 66 (2002) 018101;

A. Chatterjee, P. Sen, Phys. Rev. E 74 (2006) 036109.
[40] S. Biswas, A. Chatterjee, P. Sen, in preparation.


	Disorder induced phase transition in kinetic models of opinion dynamics
	Introduction
	The model
	Results
	Model with bond dilution
	Discussions
	Acknowledgments
	References


